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rather than the Rayleigh-Ritz method with empty cavity basis

functions. Although this paper refers to the specific boundary

problem, conclusions are general and can be useful for other

similar cases.
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Propagation in Longitudinally Magnetized Compressible

Plasma Between Two Parallel Planes

HILLEL UNZ, SENIORMEMBER,IEEE

,4Mract —The propagation of plasma waves in compressible, single

fluid, macroscopic plasm% between two paraflel, perfectly conducting planes,

with lorrgittrdinaf magnetostatic field parallel to the boundaries and in the

direction of propagation is investigated for the different hybrid plasma

wave modes of propagation.

I. PROPAGATION IN PARALLEL PLANE WAVEGUIDE

The propagation of plasma waves in compressible, single fluid,

macroscopic plasma, between two parallel perfectly conducting

planes, with transverse magnetostatic field parallel to the

boundaries, has been recently investigated [1]. In the present

short paper the theory will be extended to the case where the

magnetostatic field is parallel to the boundaries and in the

longitudinal direction of propagation of the waves.

Using small signal theory approximation, and assuming

harmonic time variation e+ ““, the wave equation for the electric

field ~ in the magnetoplasma has been found [1] in the form

+(l–x)E+ #vxvxz-k:E)xi7=o (1)
o

where k. is the electromagnetic wave number, k, is the acoustic
wave number, X is proportional to the average plasma density No,
and ~ is proportional to the magnetostatic field Ho. The wave
magnetic field ~ and the wave velocity field ii may be found [1]
from the plasma wave electric field ~.

It is assumed that the compressible plasma is confined by two
perfectly conducting parallel planes at x = O and x = a, with the

magnetostatic field in the longitudinal direction of propagation z

(2)
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Since the solution will be independent of the y-axis, one may

assume that each one of the plasma wave components will be in

the form

“(x, Z) = ,EJ(a)eLaXe’(@~ -Y’), j=x, y,z. (3)

The constant y represents the propagation constant of the plasma

wave modes propagating in the z direction, and it depends on a

to be determined from the boundary conditions.

Substituting (2) and (3) in (l), and taking from (3) 8/t3x =

irt, 13/dy = O, d/dz = – iy, one obtains three homogeneous lin-

ear algebraic equations for E’, Ey, and E’. For a nontrivial
solution, the determinant of the coefficients should be zero, and
developing this determinant, one obtains

[k;(l-x)-(a’+#)] 2[k;(l-x)-8(a’+ y’)]

+Y’(k; –d-y ’)[k:x(k; -y’)

-(k~-8y2)(k~-a2 -y2)]=0 (4)

where

k;= W2/W

and

r?= k;/k;.

Equation (4) could be rearranged to give a cubic equation in
terms of a’, with the coefficients of the equation depending on

Y2.
According to the theory of linear algebraic equations, one may

express E’ and E} in terms of E’. All the other plasma wave
components ~ and z of the plasma wave hybrid modes could be
expressed in terms of E’ as well, by using the relationships given

previously [1]. The following boundary conditions will be applied

in the present problem:

EZ=O atx=Oandx=a (5a)

EY=O atx=Oandx=a (5b)

Ux=o atx=Oandx=a. (5C)

II. THE PLASMA WAVES HYBRID MODES

The equation which relates a’ with the propagation constant y

of the plasma waves hybrid modes is given in (4). For a given y,

one may solve the cubic equation (4) in order to obtain the

corresponding characteristic values + a 1, + SX2, and f as in

terms of y. It may be assumed, therefore, that the longitudinal

electric field component E= of the plasma waves hybrid mode is

given in the form

Ez= [A1sinalx +B1cosakx +A2sinazx+B2cosa2x

+ A3sinsx3x + B3COSa3x] e’(”’-~z) (6)

where A,, A ~, A ~ and B1, B2, B3 are arbitrary constants. Using (6)

and the analysis described above, one may find Ey in terms of the

trigonometric functions and the arbitrary constants in (6) and

the constants D~ = D~ (a;, y), where m = 1,2,3. Using (6) and
the corresponding relationship in the previous paper [1], one may
find UX in terms of the trigonometric functions and the arbitrary

constants in (6) and the constants Pm( C&, y), where m =1,2,3.

Using (6) in the boundary conditions (5a) one obtains

BI+B2+B3=0 (7a)

A1sinala +B1cosa, a+ A2sina2a+B2cosa2a

+ A3sina,a + B3cosa3a = O. (7b)
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Using the expression found for EY corresponding to (6) in the

boundary conditions (5b) one obtains

aiDIA1 +azDzAz +a3D3A3=0 (8a)

al D, A1cosala – sxlDIB, sinala + azDz Azcosaza —

—~2D2%si~%a + @Acosw – ffd%%sin%u = 0. (gb)
Using the expression found for UX corresponding to (6) in the
boundary conditions (5c) one obtains

A1P1+A2P2+A3P3=0 (9a)

AI P,cosala – B, P1sinala +A2P2cosa2a – B2Pzsinaza

+A3P3cosa3a –B3P3sina3a =0. (%)

Equations (7), (8), and (9) represent six linear homogeneous

equations with the six unknowns A,, A ~, As and B,, Bz, B3, and
for a nontrivial solution the determinant of the coefficients

should be zero.

Substituting the values of al (y), a2(y)j and ex3(y) found from

(4) in the above determinantal equation, one obtains a transcen-

dental determinantal equation for the propagation constant y of

the plasma waves hybrid modes. The solution of this equation

will give an infinite number of discrete solutions for y. For each y

of a particular hybrid mode, one may find the corresponding

characteristic values al, a2, and a3, from which one is able to

find the field components of the corresponding plasma wave

hybrid mode.
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A Broad-Band Traveling-Wave Maser for the Range

40-46.5 GHz

NICKOLAY T. CHERPAK AND TAMARA A. SMIRNOVA

Abstract —A tunable traveling-wave maser (TWM) for the frequency

range 40-46.5 GHx has been developed, which is characterized by an

extended instantaneous bandwidth. Andahssite (Al ~Si05 ) doped with Fe3

atoms is used as the active crystal. The slow-wave structure is a digit comb

with broad-band matching particularly suitable for the millimeter range.

The new type of isolator employed is based on textured hexagorraf ferrite

materials, namely BaNi2ScXFe,6 – .02T The net gain within the tuning

band is 20–35 dB. The instantaneous bandwidth at a – 3-dB level is

150-100 MHz, dependhsg on the net gain. The noise temperature at the

input does not exceed 25° K.

I. INTRODUCTION

Making use of the results obtained earlier in the analyses of

millimeter-band active crystals [1], the slow-wave structure [2],

and ferrites [3], a traveling-wave maser (TWM) has been devel-

oped for the frequency range 40 to 46.5 GHz, which is char-
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Fig. 1. General view of the maser.

acterized by a high value of the gain and a broad band of

amplified frequencies. The preliminary results on this amplifier

reported earlier in [4], [5] concerned mainly the higher frequency

part of the above frequency range. The present paper contains

new experimental results obtained in further investigations, par-

ticularly on measurements of the amplifier performance in the

SWS passband.

The amplifier employs a number of novel elements, such as

andalusite (Al zSi05 ) with Fe 3+ ions as an active crystal, the

Ni ~W hexaferrite for an isolator, and a comb-type slow-wave

structure with smooth transitions to waveguides and other func-

tional elements.

The general appearance of the maser is shown in Fig. 1.

II. ACTIVE CRYSTAL, SLOW-WAVE STRUCTURE, AND

ISOLATOR

The maser employs a natural Fe3 + containing crystal of

anda.lusite operating in a magnetic field BOoriented at 90° to the
z axes of both magnetic complexes of the crystal. The axis Z1 of
one complex is along the SWS while Z2 of the other is at 59° to
ZZ, both axes being perpendicular to BO. The transition 1–2 is

employed as a signal transition. One could pump the transitions

1–3 or 1–4 (see Fig. 2) which are but slightly different in

frequency (1 –2 GHz). The concentration of Fe3 + ions in the

crystal is -0.07 percent. The EPR bandwidth at the signal

frequency is A~L = 150 MHz, and at the pumping frequency
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